50 research outputs found

    Astro2010: State of the Profession Position Paper: The Value of Observatory-Class Missions

    Get PDF
    The dramatic success of NASA鈥檚 astrophysics science program over the past 20 years has resulted from a series of assets in space ranging from Small Explorers to Observatory-Class missions. NASA鈥檚 Observatory-Class missions, such as the Chandra X-ray Observatory (CXO), the Hubble Space Telescope (HST), and the Spitzer Space Telescope (SST), form the cornerstone of this program by providing all researchers, regardless of institutional affiliation, a spectrum of science opportunities across programs large and small. These observatories stand out in their breadth of capabilities and consequent diversity of high impact science, their reach within the scientific community, and their proven ability to inspire the nation. Each mission was designed to address specific scientific imperatives recognized by past Decadal Survey Committees, whether it was to refine the extragalactic distance scale, examine galaxies as they were in the distant past, determine the relationship between black holes and quasars, observe the ultimate fate of stars in their death throes, or reveal heavily obscured regions of star-formation. These were ambitious goals, as are those envisioned for future Observatory-Class missions, such as the James Webb Space Telescope (JWST)

    Unveiling the Galaxy Population at 1.3 < z < 4: the HUDF05 NICMOS Parallel Fields

    Get PDF
    Using the Hubble Ultra Deep Field Near Infrared Camera and Multi-Object Spectrometer (HUDF-NICMOS) UDF05 parallel fields, we cross-matched 301 out of 630 galaxies with the ACS filters V606 and z850, NICMOS filters J110 and H160, and Spitzer IRAC filters at 3.6, 4.5, 5.8 , and 8.0 (mu)m. We modeled the spectral energy distributions (SEDs) to estimate: photometric redshifts, dust extinction, stellar mass, bolometric luminosity, starburst age and metallicity. To validate the photometric redshifts, comparisons with 16 spectroscopic redshifts give 75% within Delta or approx. 1.3. Based on the robustness of the photometric redshifts, we analyze a subsample of the 301 galaxies at 1.3 < or = z < or = 2 (35 objects) and 3 < or = z < or = 4 (31 objects) and determine that L(BoI) and the star formation rate increase significantly from z approx. 1.5 to 4. The Balmer decrement is indicative of more evolved galaxies, and at high redshifts, they serve as records of some of the first galaxies. Therefore, the galaxies in this sample are great candidates for future surveys with the James Webb Space Telescope and Atacama Large Millimeter Array

    A spectroscopic study of IRAS F10214+4724

    Get PDF
    The z=2.286 IRAS galaxy F10214+4724 remains one of the most luminous galaxies in the Universe, despite its gravitational lens magnification. We present optical and near-infrared spectra of F10214+4724, with clear evidence for three distinct components: lines of width ~1000 km/s from a Seyfert-II nucleus; <~200 km/s lines which are likely to be associated with star formation; and a broad ~4000 km/s CIII] 1909ang emission line which is blue-shifted by ~1000 km/s with respect to the Seyfert-II lines. Our study of the Seyfert-II component leads to several new results, including: (i) From the double-peaked structure in the Ly alpha line, and the lack of Ly beta, we argue that the Ly alpha photons have emerged through a neutral column of N_H ~ 2.5 x 10^{25}/m^2, possibly located within the AGN narrow-line region as argued in several high redshift radiogalaxies. (ii) The resonant O VI 1032,1036ang doublet (previously identified as Ly beta) is in an optically thick (1:1) ratio. At face value this implies an an extreme density (n_e ~ 10^{17}/m^3) more typical of broad line region clouds. However, we attribute this instead to the damping wings of Ly beta from the resonant absorption. (iii) A tentative detection of HeII 1086 suggests little extinction in the rest-frame ultraviolet.Comment: Accepted for publication in MNRAS. Uses BoxedEPS (included

    James Webb Space Telescope Optical Simulation Testbed I: Overview and First Results

    Full text link
    The James Webb Space Telescope (JWST) Optical Simulation Testbed (JOST) is a tabletop workbench to study aspects of wavefront sensing and control for a segmented space telescope, including both commissioning and maintenance activities. JOST is complementary to existing optomechanical testbeds for JWST (e.g. the Ball Aerospace Testbed Telescope, TBT) given its compact scale and flexibility, ease of use, and colocation at the JWST Science & Operations Center. We have developed an optical design that reproduces the physics of JWST's three-mirror anastigmat using three aspheric lenses; it provides similar image quality as JWST (80% Strehl ratio) over a field equivalent to a NIRCam module, but at HeNe wavelength. A segmented deformable mirror stands in for the segmented primary mirror and allows control of the 18 segments in piston, tip, and tilt, while the secondary can be controlled in tip, tilt and x, y, z position. This will be sufficient to model many commissioning activities, to investigate field dependence and multiple field point sensing & control, to evaluate alternate sensing algorithms, and develop contingency plans. Testbed data will also be usable for cross-checking of the WFS&C Software Subsystem, and for staff training and development during JWST's five- to ten-year mission.Comment: Proceedings of the SPIE, 9143-150. 13 pages, 8 figure

    Comparing Local Starbursts to High-Redshift Galaxies: A Search for Lyman-Break Analogs

    Get PDF
    We compare the restframe far-ultraviolet (FUV) morphologies of 8 nearby interacting and starburst galaxies (Arp 269, M 82, Mrk 08, NGC 0520, NGC 1068, NGC 3079, NGC 3310, NGC 7673) with 54 galaxies at z approx.1.5 and 46 galaxies at z approx.4 in the Great Observatories Origins Deep Survey (GOODS) images taken with the Advanced Camera for Surveys onboard the Hubble Space Telescope. We calculate the Gini coefficient (G), the second order moment of 20% of the brightest pixels (M20), and the S ersic index (n). We find that 20% (11/54) of z approx.1.5 and 37% (17/46) of z approx.4 galaxies are bulge-like, using G and M20. We also find approx.70% of the z approx.1.5 and z approx.4 galaxies have exponential disks with n > 0.8. The 2D profile combined with the nonparametric methods provides more detail, concerning the nature of disturbed systems, such as merger and post-merger types. We also provide qualitative descriptions of each galaxy system and at each redshift. We conclude that Mrk 08, NGC 3079, and NGC 7673 have similar morphologies as the starburst FUV restframe galaxies and Lyman-break galaxies at z approx.1.5 and 4, and determine that they are Lyman-break analogs

    Exploring the NRO Opportunity for a Hubble-sized Wide-field Near-IR Space Telescope -- NEW WFIRST

    Full text link
    We discuss scientific, technical and programmatic issues related to the use of an NRO 2.4m telescope for the WFIRST initiative of the 2010 Decadal Survey. We show that this implementation of WFIRST, which we call "NEW WFIRST," would achieve the goals of the NWNH Decadal Survey for the WFIRST core programs of Dark Energy and Microlensing Planet Finding, with the crucial benefit of deeper and/or wider near-IR surveys for GO science and a potentially Hubble-like Guest Observer program. NEW WFIRST could also include a coronagraphic imager for direct detection of dust disks and planets around neighboring stars, a high-priority science and technology precursor for future ambitious programs to image Earth-like planets around neighboring stars.Comment: 76 pages, 26 figures -- associated with the Princeton "New Telescope Meeting

    Science drivers and requirements for an Advanced Technology Large Aperture Space Telescope (ATLAST): Implications for technology development and synergies with other future facilities

    Get PDF
    The Advanced Technology Large-Aperture Space Telescope (ATLAST) is a concept for an 8-meter to 16-meter UVOIR space observatory for launch in the 2025-2030 era. ATLAST will allow astronomers to answer fundamental questions at the forefront of modern astronphysics, including "Is there life elsewhere in the Galaxy?" We present a range of science drivers that define the main performance requirements for ATLAST (8 to 16 milliarcsec angular resolution, diffraction limited imaging at 0.5 {\mu}m wavelength, minimum collecting area of 45 square meters, high sensitivity to light wavelengths from 0.1 {\mu}m to 2.4 {\mu}m, high stability in wavefront sensing and control). We will also discuss the synergy between ATLAST and other anticipated future facilities (e.g., TMT, EELT, ALMA) and the priorities for technology development that will enable the construction for a cost that is comparable to current generation observatory-class space missions.Comment: 12 pages, 4 figures, to appear in "Space Telescopes and Instrumentation 2010: Optical, Infrared, and Millimeter Wave," edited by Jacobus M. Oschmann Jr., Mark C. Clampin, Howard A. MacEwen, Proc. of SPIE, Vol. 7731, 77312

    The Advanced Technology Large Aperture Space Telescope (ATLAST): Science Drivers and Technology Developments

    Get PDF
    The Advanced Technology Large-Aperture Space Telescope (ATLAST) is a concept for an 8-meter to 16-meter UVOIR space observatory for launch in the 2025-2030 era. ATLAST will allow astronomers to answer fundamental questions at the forefront of modern astrophysics, including "Is there life elsewhere in the Galaxy?" We present a range of science drivers and the resulting performance requirements for ATLAST (8 to 16 milliarcsecond angular resolution, diffraction limited imaging at 0.5 m wavelength, minimum collecting area of 45 square meters, high sensitivity to light wavelengths from 0.1 m to 2.4 m, high stability in wavefront sensing and control). We also discuss the priorities for technology development needed to enable the construction of ATLAST for a cost that is comparable to current generation observatory-class space missions. Keywords: Advanced Technology Large-Aperture Space Telescope (ATLAST); ultraviolet/optical space telescopes; astrophysics; astrobiology; technology development

    The Advanced Technology Large Aperture Space Telescope (ATLAST): Science Drivers, Technology Developments, and Synergies with Other Future Facilities

    Get PDF
    The Advanced Technology Large-Aperture Space Telescope (ATLAST) is a concept for an 8-meter to 16-meter UVOIR space observatory for launch in the 2025-2030 era. ATLAST will allow astronomers to answer fundamental questions at the forefront of modern astrophysics, including "Is there life elsewhere in the Galaxy?" We present a range of science drivers that define the main performance requirements for ATLAST (8 to 16 milliarcsec angular resolution, diffraction limited imaging at 0.5 m wavelength, minimum collecting area of 45 square meters, high sensitivity to light wavelengths from 0.1 m to 2.4 m, high stability in wavefront sensing and control). We will also discuss the synergy between ATLAST and other anticipated future facilities (e.g., TMT, EELT, ALMA) and the priorities for technology development that will enable the construction for a cost that is comparable to current generation observatory-class space missions
    corecore